0% Complete
English
صفحه اصلی
/
شانزدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
GNN-based Topology Feature Extraction for Adaptive 6G Network Slicing
نویسندگان :
Amirmasoud Sepehrian
1
Siavash Khorsandi
2
1- دانشگاه صنعتی امیرکبیر (پلیتکنیک تهران)
2- دانشگاه صنعتی امیرکبیر (پلیتکنیک تهران)
کلمات کلیدی :
6G Networks،Soft Network Slicing،Graph Neural Networks،Topology Feature Extraction،Representation Power،Comparative Evaluation
چکیده :
The evolution to 6G networks introduces unprecedented challenges, including ultra-high data rates, massive connectivity, and stringent QoS demands (e.g., sub-millisecond latency for URLLC) in highly dynamic, heterogeneous environments. Traditional hard slicing methods fall short in adapting to fluctuating traffic and resource availability, leading to inefficiencies in resource utilization, SLA violations, and increased energy consumption. This necessitates advanced adaptive mechanisms like soft network slicing, which require precise topology descriptions to predict performance metrics and enable real-time orchestration. Graph Neural Networks (GNNs) are essential here, as they excel at capturing intricate graph-structured relationships in network topologies—far superior to conventional ML models that ignore relational dependencies—facilitating scalable feature extraction for optimization tasks. This research addresses these needs through two core components: (1) a comprehensive comparison of GNN variants (GraphSAGE, GCN, GAT, TransformerConv) to evaluate their representation power in terms of descriptive accuracy and runtime; and (2) a novel embedding method that integrates current slicing requests and global graph features (e.g., density, centrality) with local attributes. Using the Internet Topology Zoo dataset augmented with 6G slice variants, we assess models on metrics like MSE, R2, SMAPE, runtime efficiency, and generalization.
لیست مقالات
لیست مقالات بایگانی شده
The risk prediction of heart disease by using neuro-fuzzy and improved GOA
Vahid Safari Dehnavi - Masoud Shafiee
AN EFFICIENT TASK SCHEDULING IN CLOUD COMPUTING BASED ON ACO ALGORITHM
Zahra Shafahi - Dr Alireza Yari
مروری بر الگوریتمهای انتخاب مشتری در یادگیری فدرال
عطیه منعمی بیدگلی - رضا مهدوی
بهبود معاملات الگوریتمی سهام مبتنی بر رویکرد یادگیری تقویتی
مها العطوان - جعفر پورامینی
Enhancing kNN-Based Intrusion Detection with Differential Evolution with Auto-Enhanced Population Diversity
Zohre Karimi - Zeinab Torabi
بهبود دقت و کارایی در شبکههای عصبی کانولوشنی با استفاده از روشهای محاسبات تقریبی
محمدرضا رفیعی نژاد - محمدرضا بینش مروستی - سید امیر اصغری
Conceptual Intelligent Model for Visual Question Answering using Attention Mechanism and Relational Reasoning
ٍElham Alighardash - Dr Hassan Khotanlou - Vahid Pour Amin
Designation and development of Camera Sensor for identification of polymer type
Negin Piri - Ahmad Salehi - Erfan Memarian
Exploring the Relationship Between Gameplay Log Data and Depression & Anxiety
Soroush Elyasi - Arya Varasteh Nezhad - Fattaneh Taghiyareh
Improving Deep Neural Network Accelerator for Malaria Diseased Blood Cells using FPGA
Hadi Rezaeikarjani - Mojtaba Valinataj
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.2