0% Complete
English
صفحه اصلی
/
چهاردهمین کنفرانس بین المللی فناوری اطلاعات و دانش
Improving Deep Neural Network Accelerator for Malaria Diseased Blood Cells using FPGA
نویسندگان :
Hadi Rezaeikarjani
1
Mojtaba Valinataj
2
1- دانشگاه صنعتی نوشیروانی بابل
2- دانشگاه صنعتی نوشیروانی بابل
کلمات کلیدی :
Hardware Accelerators،Malaria Disease،FPGA،Disease Detection with Neural Networks،Neural Networks،Medical Diagnosis
چکیده :
The escalating computational demands of deep neural networks across various applications have driven the adoption of hardware accelerators. These specialized hardware devices are tailor-made for specific computational tasks, offering enhanced efficiency compared to conventional computer systems. In medical diagnosis applications, particularly the detection of malaria-infected blood cells, hardware accelerators play a pivotal role. This paper explores the augmentation and acceleration of malaria-infected blood cell detection by leveraging FPGA-based hardware accelerators with deep neural networks. The significance of this research is twofold. Firstly, rapid and precise processing of medical images is imperative in diagnosing malaria. FPGA-based hardware accelerators excel in parallel processing and high efficiency, significantly expediting disease detection, a crucial advantage during outbreaks. Secondly, the intricate architectures and numerous parameters of deep neural networks demand efficient implementation. Hardware accelerators, notably FPGA-based ones, facilitate precise and efficient model execution, enhancing diagnosis accuracy, a paramount factor in disease detection. The study adopts an artificial neural network with a Multilayer Perceptron (MLP) architecture and implements various hardware units, resulting in substantially faster malaria-infected cell detection. The outcomes demonstrate an impressive accuracy increase from 94.76% to 98.27% and a significant reduction in latency from 5.93 nanoseconds to 0.397 nanoseconds in the hardware implementation. Moreover, the output representation has been improved, transitioning from a matrix display to a visually interpretable format with distinct colors, enabling real-time disease detection.
لیست مقالات
لیست مقالات بایگانی شده
نقش دادههای آنلاین یونیفرمیتی و تحلیل آماری پیشرفته با ترکیب پایتون و پاوربیآی در بهبود کیفیت و فرآیند تولید تایر
دانیال قادری
Inner and Outer Bearing Fault Diagnosis of electrical Motors Using a Proposed Algorithm and Vibration Signals
Vahid Safari Dehnavi - Masoud Shafiee
ISPREC: Integrated Scientific Paper Recommendation using heterogeneous information network
Elaheh Jafari - Dr Bita Shams - Dr Saman Haratizadeh
A Model-Driven Approach for Automatic Generation of Android Tourism Applications
Sara Adib - Bahman Zamani
Distributed coordination protocol for event data exchange in IoT monitoring applications
Behnam Khazael - Hadi Tabatabaee Malazi
AI-based Message Spam Classification Framework for Secure Autonomous Vehicles Communication
Riya Upadhyay - Mili Virani - Lakshit Pathak - Rajesh Gupta - Sudeep Tanwar - Hossein Shahinzadeh
A Swarm Intelligence Approach to Design Optimal Repeaters in Multilayer Graphene Nanoribbon Interconnects
Majid Sanaeepur - Maryam Momeni
طراحی سیستم پشتیبانی تجاری با استفاده از فناوری هوش مصنوعی
سجاد قطعی - زهره عربی - محمد روحی
A Deep Neural Network-based Method for MmWave Time-varying Channel Estimation
Amirhossein Molazadeh - Zahra Maroufi - Mehrdad Ardebilipour
Distributed Learning Automata-based Algorithm for Finding K-Clique in Complex Social Networks
Mohammad Mehdi Daliri Khomami - Alireza Rezvanian - Ali Mohammad Saghiri - Mohammad Reza Meybodi
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.2