0% Complete
English
صفحه اصلی
/
پانزدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
A Demand Response Schema in Industry: Smart Scheduling Approach for Industrial Processes
نویسندگان :
Negin Shafinezhad
1
Hamid Abrishami
2
Maryam Mahmoodi
3
1- Ferdowsi University of Mashhad
2- Ferdowsi University of Mashhad
3- Ferdowsi University of Mashhad
کلمات کلیدی :
Smart grid،demand response،manufacturing processes،energy-aware scheduling،peak demand،energy cost
چکیده :
The manufacturing sector is recognized as the largest energy consumer within the smart grid. Excessive energy usage in production lines poses significant challenges, such as increased peak demand, high energy costs, strained grid resources, and power outages. Implementing demand response programs can address these issues and provide reliable and stable power to customers. Additionally, the integration of renewable energy sources can notably reduce carbon emissions and support sustainability objectives. To enhance efficiency, scheduling and intelligent manufacturing techniques can shift the execution time of production processes to off-peak periods and adjust consumption patterns on the production line. In this study, we propose a method called Scheduling for Industrial Processes to modify Energy consumption behavior (SIPE) under specified deadlines. SIPE offers economic benefits through an energy storage system for industrial customers participating in demand response programs. Moreover, it modulates energy consumption based on a maximum negotiated energy cost, which is determined as the highest allowable energy consumption cost within a defined scheduling period between the power provider and industrial customers. The proposed approach coordinates processes based on their durations and defined constraints. To evaluate the effectiveness of this approach, we selected Additive Manufacturing, as it is one of the most energy-intensive industries and is used across various manufacturing fields. We conducted numerous experiments by varying production parameters in the manufacturing line and compared the results with state-of-the-art approaches. The performance evaluation results demonstrate a significant reduction in both energy costs and power demand specially during peak periods.
لیست مقالات
لیست مقالات بایگانی شده
استفاده از هوش مصنوعی در فضای آموزش عالی: آن روی سکه
محمدمتین لیث صفار - عسل آغاز
LuckyAgent2022: A Stop-Learning Multi-Armed Bandit Automated Negotiating Agent
Arash Ebrahimnezhad - Faria Nassiri-Mofakham
Aligning the Brick and Mortar cosmetic with digital transformation as the right way to overhaul the In-store Experience
Mehrgan Malekpour - Dr Federica Caboni
An Improved Image Classification Based In Feature Extraction From Convolutional Neural Network: Application To Flower Classification
Faeze Sadati - Dr Behrooz Rezaie
Optimal selection of seed nodes by reducing the influence of common nodes in the influence maximization problem
Farzaneh Kazemzadeh - Ali Asghar Safaei - Mitra Mirzarezaee
CRYPTOCURRENCY PRICE PREDICTION USING A HYBRID DEEP MODEL AND TECHNICAL AND PSYCHOLOGICAL INDICATORS
Mohammadreza Borjian - Mohammad Mehdi Homayounpour
UltraLearn: Next-Generation CyberSecurity Learning Platform
Saeed Raisi - Saeid Ghasemshirazi - Ghazaleh Shirvani
ML-based Optical Fibre Fault Detection in Smart Surveillance and Traffic Systems
Rushil Patel - Sana Narmawala - Nikunjkumar Mahida - Rajesh Gupta - Sudeep Tanwar - Hossein Shahinzadeh
ارائه مدل یادگیری ماشین برای پیشبینی سریزمانی باینری از دیدگاه مسئلههای دستهبندی با کاربرد در پیشبینی نتهای موسیقی
نیلوفر ع��دلخانی - حسام عمرانپور
پیشبینی بستری مجدد بیماران با استفاده از استخراج مفاهیم زیستپزشکی از متون بالینی
فهیمه شاهرخ شهرکی - رسول سامانی - دکتر ناصر قدیری فهیمه شاهرخ شهرکی - رسول سامانی - ناصر قدیری -
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.2