0% Complete
English
صفحه اصلی
/
پانزدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
ML-based Optical Fibre Fault Detection in Smart Surveillance and Traffic Systems
نویسندگان :
Rushil Patel
1
Sana Narmawala
2
Nikunjkumar Mahida
3
Rajesh Gupta
4
Sudeep Tanwar
5
Hossein Shahinzadeh
6
1- Institute of Technology, Nirma University
2- Institute of Technology, Nirma University
3- Institute of Technology, Nirma University
4- Institute of Technology, Nirma University
5- Institute of Technology, Nirma University
6- دانشگاه صنعتی امیرکبیر (پلیتکنیک تهران)
کلمات کلیدی :
Optical Fibre،Smart City،Surveillance،Machine Learning،Fault Detection
چکیده :
It is evident that the intense transformation in the smart city structure has produced a demand for more optical fibre networks to facilitate the systems’ speedy communication for instance traffic control, surveillance, as well as IoT devices. Due to the nature of the optical fibre networks being very susceptible, and the slightest break or a bend can result in a major breakdown of operation; then, the ability to quickly identify the fault as well as rectify it is important in maintaining the efficiency of the systems. In this work, we propose a detailed workflow for fibre optic fault detection and classification using machine learning. We employ LightGBM, XGBoost, CatBoost, and AdaBoost machine learning models, along with OTDR data to categorize fault types. The process we adopt comprises enhancing the raw data to capture more of the signals quality before analyzing the data using these models for fault detection. Of all the models LightGBM was the best performing as it recorded an accuracy of 98.12% thereby making it to be the best model for this task. The use of key performance metrics such as accuracy, precision, recall, and F1-score along with confusion matrices, ROC curves on the graphs was done in order to measure the performance of the models accurately. Based on the performance of these models, a rational strategy in developing an intelligent solution for maintaining the operability and efficiency of smart city fibre optic networks is achieved.
لیست مقالات
لیست مقالات بایگانی شده
Stock Market Prediction Using Hard and Soft Data Fusion
Saeed Mohammadi Dashtaki - Masoud Alizadeh - Behzad Moshiri
Improving Long-Term Engagement of Insurance Brokerages by Providing Gamified Configurations Based on The Delphi Method
Hosein Bayati - Fattaneh Taghiyareh - Sahand Hashemi
ارائه یک الگوریتم سلسله مراتبی جهت تشخیص نفوذ در شبکه های کامپیوتری
دکتر باقر رحیم پور کامی - سیدمحمد سیدی برشی باقر رحیم پور کامی - سیدمحمد سیدی برشی -
شناسایی وبگاه های دامچینی به کمک شبکه عصبی گسستهساز بردار یادگیر (LVQ)
یگانه ستاری - غلامعلی منتظر
Designing an AI-assisted toolbox for fitness activity recognition based on deep CNN
Ali Bidaran - Dr Saeed Sharifian
Knowledge gap extraction based on the learner click behavior in interaction with videos using the association rule algorithm
Yosra Bahrani - Omid Fatemi
A Swarm Intelligence Approach to Design Optimal Repeaters in Multilayer Graphene Nanoribbon Interconnects
Majid Sanaeepur - Maryam Momeni
Conceptual Intelligent Model for Visual Question Answering using Attention Mechanism and Relational Reasoning
ٍElham Alighardash - Dr Hassan Khotanlou - Vahid Pour Amin
یک سیستم پاسخ به نفوذ در شبکه های اینترنت اشیاء با استفاده از شبکه های مبتنی بر نرم افزار
احسان شاهرخی مینا - رضا محمدی - محمد نصیری
A Multi Objective & Trust-Based Workflow Scheduling Method In Cloud Computing Based On The MVO Algorithm
Fatemeh Ebadifard
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.2