0% Complete
English
صفحه اصلی
/
دوازدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
Customer Churn Prediction Using Data Mining Techniques for an Iranian Payment Application
نویسندگان :
Olya Rezaeian
1
ُSeyedhamidreza Shahabi Haghighi
2
Jamal Shahrabi
3
1- دانشگاه صنعتی امیرکبیر
2- دانشگاه صنعتی امیر کبیر
3- دانشگاه صنعتی امیرکبیر
کلمات کلیدی :
Customer Churn, Data Mining, Imbalance Data, RFM Model
چکیده :
Customer Relationship Management (CRM) and data-driven marketing have become of paramount importance in this age of evolved markets and fierce competition among businesses. One of the most important branches of CRM is retaining existing customers. Since customer acquisition is about 5 to 6 times more costly than retaining customers, achieving an accurate model for customer churn prediction is essential to devise marketing retention strategies. Therefore, in this study, ensemble models are proposed to predict customer churn. Since customer churn is a rare occurrence in an organization and causes an imbalanced distribution in the target variable, ensemble learning algorithms, one of the most efficient and widely used methods, have been used to deal with this problem. With regard to the case study, the dataset was generated on demographic and 13-month transactions of users of an Iranian payment application. In this study, the best model to predict customer churn is the bagging version of Decision Tree, reaching the highest accuracy, f-measure and AUC.
لیست مقالات
لیست مقالات بایگانی شده
ساخت پیکره برچسب خورده گزارش های آسیب شناسی
مسلم سمیعی پاقلعه - مهرنوش شمس فرد
ISPREC: Integrated Scientific Paper Recommendation using heterogeneous information network
Elaheh Jafari - Dr Bita Shams - Dr Saman Haratizadeh
Persian Language Understanding in Task-oriented Dialogue System for Online Shopping
Zeinab Borhanifard - Hossein Basafa - Seyedeh Zahra Razavi - Heshaam Faili
Short-Term Traffic Flow Prediction Based on a Recurrent Deep Neural Networks: Study in Tehran
Dr Monireh عبدوس - Taha Vajed Samei
A method for image steganography based on chaotic maps and advanced compression algorithms
Mohammad Yousefi Sorkhi
An OWA-Powered Dynamic Customer Churn Modeling in the banking industry Based on Customer Behavioral Vectors
Masoud Alizadeh - Mohammad Soleymannejad - Behzad Moshiri
Generalized Self-Attentive Spatiotemporal GCN with OPTICS Clustering for Recommendation Systems
Saba Zolfaghari - Seyed Mohammad Hossein Hasheminejad
AI-based Message Spam Classification Framework for Secure Autonomous Vehicles Communication
Riya Upadhyay - Mili Virani - Lakshit Pathak - Rajesh Gupta - Sudeep Tanwar - Hossein Shahinzadeh
Predicting Concentration of Particulate Matter (PM2.5) in Hamedan using Machine Learning Algorithms
Anita Karim Ghassabpour - Hatam Abdoli - Muharram Mansoorizadeh - Saeid Seyedi
Data Analysis to Reduce Electrical Power Plants
Amirali Sahraei - Jamshid Shanbehzadeh
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.0.3