0% Complete
English
صفحه اصلی
/
شانزدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
Robustness Gap in NLP Models for Vulnerability Descriptions: Benchmarking and Data Augmentation
نویسندگان :
AmirHossein Majd
1
Mahdi Yousefikia
2
Saghar Ghasemzadeh
3
Amirreza Asari
4
Arya Khoshnavataher
5
Seyedeh Leili Mirtaheri
6
1- University of Calabria
2- دانشگاه خوارزمی
3- دانشگاه خوارزمی
4- دانشگاه خوارزمی
5- دانشگاه خوارزمی
6- University of Calabria
کلمات کلیدی :
Software Vulnerabilities،Natural Language Processing،Robustness Benchmark،Noise Injection،Exploitability Prediction،Data Augmentation،Cybersecurity
چکیده :
Software vulnerability descriptions from CVE/NVD are the primary corpus for analysis, prioritization, and risk management in cybersecurity. Yet natural noise (typos, synonym substitutions, lexical variety) and adversarial perturbations undermine the accuracy and trustworthiness of NLP models. This paper presents, to our knowledge, the first systematic benchmark of NLP robustness on vulnerability descriptions. We train nine diverse architectures—lightweight transformers (MiniLM, MPNet, SBERT), hybrid models (BERT-LSTM, TextRCNN), and classical recurrent networks (BiLSTM, LSTM)—on a balanced dataset of over 56,000 real-world records from NVD and Exploit-DB, and fine-tune them for exploitability prediction. For comprehensive evaluation, we inject three noise families into test sets at levels from 10% to 80%: character-level edits (substitutions/swaps), synonym replacements using WordNet, and composite adversarial attacks generated with TextAttack. Performance declines across all models as noise rises, but vulnerability profiles differ: MiniLM attains the strongest clean-data score (F1 ≈ 0.933) yet is most brittle under character noise, whereas TextRCNN, despite a lower baseline, preserves comparatively higher stability in heavily perturbed conditions. Finally, we test a pragmatic hardening strategy—data augmentation with noisy variants followed by retraining—which consistently narrows robustness gaps across architectures without materially sacrificing clean-data accuracy. The benchmark and code enable reproducible evaluation and future robust modeling in cybersecurity.
لیست مقالات
لیست مقالات بایگانی شده
مروری بر تشخیص جامعه در شبکه های اجتماعی
صفورا اخلاقی - محمدباقر منهاج - بهروز معصومی
Enhancing Employee Promotion Prediction with a Novel Hybrid Model Integrating Convolutional Neural Networks and Random Forest
Pouya Ardehkhani - Seyyed Reza Moslemi - Hanieh Hooshmand
بررسی امنیت وفقی در اینترنت وسایل نقلیه
سیده یگانه غیور باغبانی - دکتر سعید جلیلی سیده یگانه غیور باغبانی - سعید جلیلی -
SDN-based Deep Anomaly Detection For Securing Cloud Gaming Servers
Mohammadreza Ghafari - Dr Seyed Mostafa Safavi Hemami
معماری مبتنی بر مدلهای زبانی بزرگ برای تخصیص وظایف پویا و خودکار در سامانه رباتیک ازدحامی چندالگوریتمی
حمید هوشمند - سینا میرخانی - محمد حسین وارث وزیریان
شناسایی حسابهای چندکاربره بر اساس ویژگیهای شخصیتی کاربران در پلتفرمهای پخش فیلم
مهسا رضائی - مرجان کائدی
Designing an AI-assisted toolbox for fitness activity recognition based on deep CNN
Ali Bidaran - Dr Saeed Sharifian
از داده تا تحول دیجیتال: توسعه داشبورد مدیریتی مبتنی بر دادهکاوی، علم داده و هوش تجاری برای ارتقای تصمیمگیری و بهبود عملکرد در ذوبآهن اصفهان
پدرام کیانی - یحیی غلامیان - پریناز واعظ
مدیریت توأم منابع و خواب ایستگاه پایه مبتنی بر یادگیری تقویتی در شبکه های فوق متراکم با ارتباطات دو طرفه
طاهره رحمتی - بهروز شاهقلی قهفرخی
A New Routing Protocol in Internet of Vehicles Inspired of Spread Model of the Covid-19 Virus
Taha Yasin Rezapour - Esmaeil Zeinali - Reza Ebrahimi Atani - Mohammad Mehdi Gilanian Sadeghi
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.2