0% Complete
English
صفحه اصلی
/
یازدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
Vi-Net: A Deep Violent Flow Network for Violence Detection in Video Sequences
نویسندگان :
Tahereh Zarrat Ehsan
1
Seyed Mehdi Mohtavipour
2
1- دانشگاه گیلان
2- دانشگاه علم و صنعت ایران
کلمات کلیدی :
deep learning, computer vision, convolutional neural network, action detection, violence detection
چکیده :
Video surveillance cameras are widely used due to security concerns. Analyzing these large amounts of videos by a human operator is a difficult and time-consuming job. To overcome this problem, automatic violence detection in video sequences has become an active research area of computer vision in recent years. Early methods focused on hand-engineering approaches to construct hand-crafted features, but they are not discriminative enough for complex actions like violence. To extract complex behavioral features automatically, it is required to apply deep networks. In this paper, we proposed a novel Vi-Net architecture based on the deep Convolutional Neural Network (CNN) to detect actions with abnormal velocity. Motion patterns of targets in the video are estimated by optical flow vectors to train the Vi-Net network. As violent behavior comprises fast movements, these vectors are useful for the extraction of distinctive features. We performed several experiments on Hockey, Crowd, and Movies datasets and results showed that the proposed architecture achieved higher accuracy in comparison with the state-of-the-art methods.
لیست مقالات
لیست مقالات بایگانی شده
نقشه های شناختی فازی پیشرفته (FCM) رویکردی برای مدل سازی سیستم های پیچیده ی پویا
فریبا اسلامی امیرآبادی - کمال میرزایی بدرآبادی
Predicting Concentration of Particulate Matter (PM2.5) in Hamedan using Machine Learning Algorithms
Anita Karim Ghassabpour - Hatam Abdoli - Muharram Mansoorizadeh - Saeid Seyedi
SPA Bot: Smart Price-Action Trading Bot for Cryptocurency Market
Dr Hamid Jazayeriy - Mohammad Daryani
Epileptic Seizure Detection based on Statistical and Wavelet Features and Siamese Network
Zahra Hossein-Nejad - Mehdi Nasri
A Novel Resource Allocation Scheme for Underlaying NOMA-Based Multi-Channel Cognitive D2D Communications
Anahita Akbari - Dr Javad Zeraatkar Moghaddam - Dr Mehrdad Ardebilipour
Classical-Quantum Multiple Access Wiretap Channel with Common Message: One-shot Rate Region
Hadi Aghaee - Dr Bahareh Akhbari
ارائه یک مدل جهت تخصیص منابع به توابع مجازی شبکه (VNF) باهدف حفظ درجه تعادل بار در شبکه های چند دامنه ای مبتنی بر نرمافزار(multi-SDN)
امین زنداقطاعی - دکتر وحید ستاری نائینی امین زنداقطاعی - وحید ستاری نائینی -
Using Trust Statements and Ratings by GraphSAGE to Alleviate Cold Start in Recommender Systems
Seyedeh Niusha Motevallian - Dr Seyed Mohammad Hossein Hasheminejad
IoT-Driven Water Quality Management System using Deep Q-Network
Shakiba Rajabi - Komeil Moghaddasi
A Model-Driven Approach for Automatic Generation of Android Tourism Applications
Sara Adib - Bahman Zamani
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 41.3.1