0% Complete
English
صفحه اصلی
/
پانزدهمین کنفرانس بین المللی فناوری اطلاعات و دانش
ElectroCNN: Regressive CNN-based Energy Consumption Forecasting Leveraging Weather Data
نویسندگان :
Dharmi Patel
1
Mann Patel
2
Krisha Darji
3
Rajesh Gupta
4
Sudeep Tanwar
5
Jitendra Bhatia
6
Hossein Shahinzadeh
7
1- Institute of Technology, Nirma University
2- Institute of Technology, Nirma University
3- Institute of Technology, Nirma University
4- Institute of Technology, Nirma University
5- Institute of Technology, Nirma University
6- Institute of Technology, Nirma University
7- دانشگاه صنعتی امیرکبیر (پلیتکنیک تهران)
کلمات کلیدی :
Electricity،CNN،Acquired Weather Data،Energy Efficiency
چکیده :
Energy efficiency has become essential in the modern power sector. This research suggests an approach for identifying weather patterns to improve energy efficiency. ElectroCNN, which uses a Convolutional Neural Network (CNN) as its foundation, makes it easier to anticipate energy usage in a variety of meteorological scenarios. ElectroCNN modifies forecasts based on referred-to weather patterns to account for the three primary energy considerations associated with a given geographic location: industrial, commercial, and domestic. Four optimizers which are Adagrad, Adam, RMSprop, and FTRL used in the study to effectively improve prediction accuracy. In the context of model performance assessment, a stringent methodology is employed, integrating validation r2-score and validation loss curve to identify potential overfitting during the training process. Additionally, the study presents exhaustive curves for diverse optimizers such as Adagrad, Adam, RMSprop, and FTRL. These curves improve our comprehension of the model’s performance under different optimization procedures by offering a thorough insight into the way every optimizer impacts testing samples in three distinct locations.
لیست مقالات
لیست مقالات بایگانی شده
Embedding-Consistent Contrastive Learning: A Robust Approach for Imbalanced Classification
Sobhan Siamak - Eghbal Mansoori
CRYPTOCURRENCY PRICE PREDICTION USING A HYBRID DEEP MODEL AND TECHNICAL AND PSYCHOLOGICAL INDICATORS
Mohammadreza Borjian - Mohammad Mehdi Homayounpour
Analysing effect of news polarity on stock market prediction: a machine learning approach
Golshid Ranjbaran - Dr Mohammad-Shahram Moin - Dr Sasan H Alizadeh - Dr Abbas Koochari
A Deep Learning Framework for Phase-Aware Feature Representation to Improve Sound Source Direction and Distance Estimation
Zahra Abolfazli - Hamid Reza Abutalebi
پیشبینی بستری مجدد بیماران با استفاده از استخراج مفاهیم زیستپزشکی از متون بالینی
فهیمه شاهرخ شهرکی - رسول سامانی - دکتر ناصر قدیری فهیمه شاهرخ شهرکی - رسول سامانی - ناصر قدیری -
Distributed Deep Reinforcement Learning for Energy-Efficient and Low-Latency Load Balancing in Mobile Edge Computing
Pooria Azizi - Siavash Khorsandi
Revert Propagation: Who are responsible for a contagion initialization in a Diffusion Network?
Arman Sepehr - Mohammadzaman Zamani - Hamid Beigy - Shabnam Behzad
Vi-Net: A Deep Violent Flow Network for Violence Detection in Video Sequences
Tahereh Zarrat Ehsan - Seyed Mehdi Mohtavipour
A Nano-based High-Speed QCA circuit for Information Security with Image Masking
Saeid Seyedi - Hatam Abdoli
Secure Web-Based Control of ROS 1 Robots Using AES-256-GCM Encryption and LLM Integration
Ali Godarzvand chegini - Mohammad Arabian
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.2